Ischemia activates the ATF6 branch of the endoplasmic reticulum stress response.

نویسندگان

  • Shirin Doroudgar
  • Donna J Thuerauf
  • Marie C Marcinko
  • Peter J Belmont
  • Christopher C Glembotski
چکیده

Stresses that perturb the folding of nascent endoplasmic reticulum (ER) proteins activate the ER stress response. Upon ER stress, ER-associated ATF6 is cleaved; the resulting active cytosolic fragment of ATF6 translocates to the nucleus, binds to ER stress response elements (ERSEs), and induces genes, including the ER-targeted chaperone, GRP78. Recent studies showed that nutrient and oxygen starvation during tissue ischemia induce certain ER stress response genes, including GRP78; however, the role of ATF6 in mediating this induction has not been examined. In the current study, simulating ischemia (sI) in a primary cardiac myocyte model system caused a reduction in the level of ER-associated ATF6 with a coordinate increase of ATF6 in nuclear fractions. An ERSE in the GRP78 gene not previously shown to be required for induction by other ER stresses was found to bind ATF6 and to be critical for maximal ischemia-mediated GRP78 promoter induction. Activation of ATF6 and the GRP78 promoter, as well as grp78 mRNA accumulation during sI, were reversed upon simulated reperfusion (sI/R). Moreover, dominant-negative ATF6, or ATF6-targeted miRNA blocked sI-mediated grp78 induction, and the latter increased cardiac myocyte death upon simulated reperfusion, demonstrating critical roles for endogenous ATF6 in ischemia-mediated ER stress activation and cell survival. This is the first study to show that ATF6 is activated by ischemia but inactivated upon reperfusion, suggesting that it may play a role in the induction of ER stress response genes during ischemia that could have a preconditioning effect on cell survival during reperfusion.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Activation of the ATF6 branch of the unfolded protein response in neurons improves stroke outcome.

Impaired function of the endoplasmic reticulum (ER stress) is a hallmark of many human diseases including stroke. To restore ER function in stressed cells, the unfolded protein response (UPR) is induced, which activates 3 ER stress sensor proteins including activating transcription factor 6 (ATF6). ATF6 is then cleaved by proteases to form the short-form ATF6 (sATF6), a transcription factor. To...

متن کامل

Roles for endoplasmic reticulum-associated degradation and the novel endoplasmic reticulum stress response gene Derlin-3 in the ischemic heart.

RATIONALE Stresses, such as ischemia, impair folding of nascent proteins in the rough endoplasmic reticulum (ER), activating the unfolded protein response, which restores efficient ER protein folding, thus leading to protection from stress. In part, the unfolded protein response alleviates ER stress and cell death by increasing the degradation of terminally misfolded ER proteins via ER-associat...

متن کامل

Protein disulfide isomerase-associated 6 is an ATF6-inducible ER stress response protein that protects cardiac myocytes from ischemia/reperfusion-mediated cell death.

Proper folding of secreted and transmembrane proteins made in the rough endoplasmic reticulum (ER) requires oxygen for disulfide bond formation. Accordingly, ischemia can impair ER protein folding and initiate the ER stress response, which we previously showed is activated in the ischemic heart and in culture cardiac myocytes subjected to simulated ischemia. ER stress and ischemia activate the ...

متن کامل

ATF6 Decreases Myocardial Ischemia/Reperfusion Damage and Links ER Stress and Oxidative Stress Signaling Pathways in the Heart.

RATIONALE Endoplasmic reticulum (ER) stress causes the accumulation of misfolded proteins in the ER, activating the transcription factor, ATF6 (activating transcription factor 6 alpha), which induces ER stress response genes. Myocardial ischemia induces the ER stress response; however, neither the function of this response nor whether it is mediated by ATF6 is known. OBJECTIVE Here, we examin...

متن کامل

XBP1 mRNA Is Induced by ATF6 and Spliced by IRE1 in Response to ER Stress to Produce a Highly Active Transcription Factor

In yeast, the transmembrane protein kinase/endoribonuclease Ire1p activated by endoplasmic reticulum stress cleaves HAC1 mRNA, leading to production of the transcription factor Hac1p that activates the unfolded protein response (UPR). In mammals, no Hac1p counterpart has yet been discovered despite the presence of Ire1p homologs in the endoplasmic reticulum. Instead, the transcription factor AT...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 284 43  شماره 

صفحات  -

تاریخ انتشار 2009